If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2+8x-24=0
a = 80; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·80·(-24)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-88}{2*80}=\frac{-96}{160} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+88}{2*80}=\frac{80}{160} =1/2 $
| -5+r=3r-r | | x-14+2x=10 | | -5-4a=a-6a | | (qX1.6)+2=5.2 | | 30-10P=10+30p | | 3p-5+4p=5p-7 | | 15x+45=12*2x | | X=20=96-x | | 4p+10=12 | | 2t+4t-2t=12 | | 7m+3=9m+3 | | –7r=–6r−4 | | 15g+g−2g−3g−7g=20 | | z-z+3z+4z+z=16 | | 12r-3=9r-30 | | 6−10b=–6−4b | | 8k=-6+7k | | 6x-18=10x+6 | | 13y-8y-y-y=12 | | (q·1.6)+2=5.2 | | -5b-6=-3b | | x*2x=96 | | -3x+1=-2x-8 | | 5x+15+2x-21=180 | | -3x+69=93 | | (f-3)+2.9=7.5 | | n+5/7=1/2 | | 3(5x-15)=15(x-15) | | 4x+3x-2=5x+20 | | 24=4+2m | | b+155/20=13 | | -(8n-2)=3 |